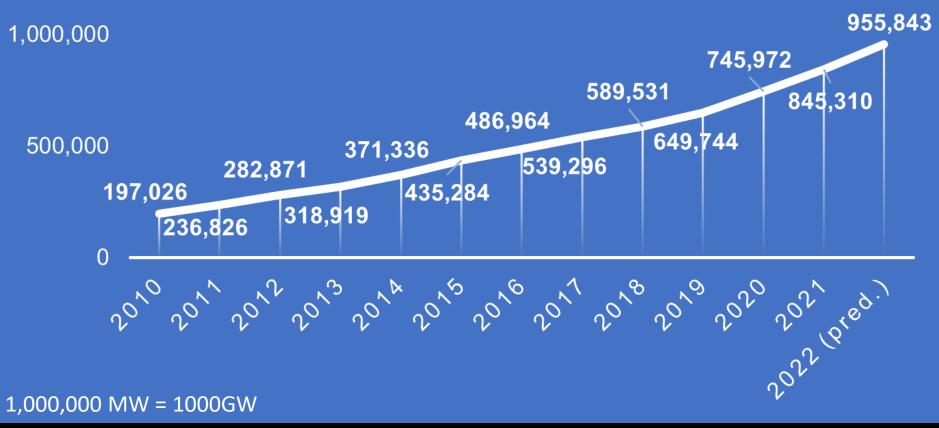
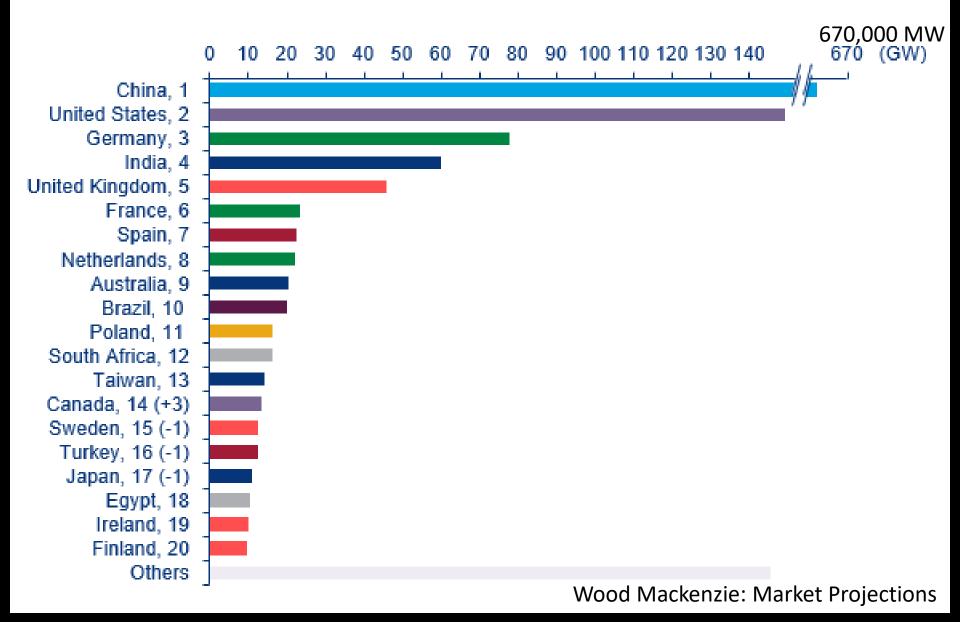

Bats and Wind Energy: A Crash Course in a **Wicked Problem** Dr. Erin F. Baerwald, **Ecosystem Science and Management,** University of Northern British Columbia

Wicked Problem?

Simple	Complex	Wicked
EASY TO SOLVE	RESISTS SOLVING	RESISTS DEFINING
A clear problem with a clear solution	The problem and the solution are not clear but can be understood with time	Problem and solution not understood and keep shifting when we try to define them
Predictable Straightforward Obvious	Many familiar elements Hidden root courses Nonlinear Interoperating parts affect each other	Ambiguous, chaotic Many stakeholders with conflicting perspectives Many elements are hidden and unknown No right or wrong solution Not quantifiable No precedents


Conservation Biology, Volume: 30, Issue: 3, Pages: 450-455, First published: 25 April 2016, DOI: (10.1111/cobi.12689)

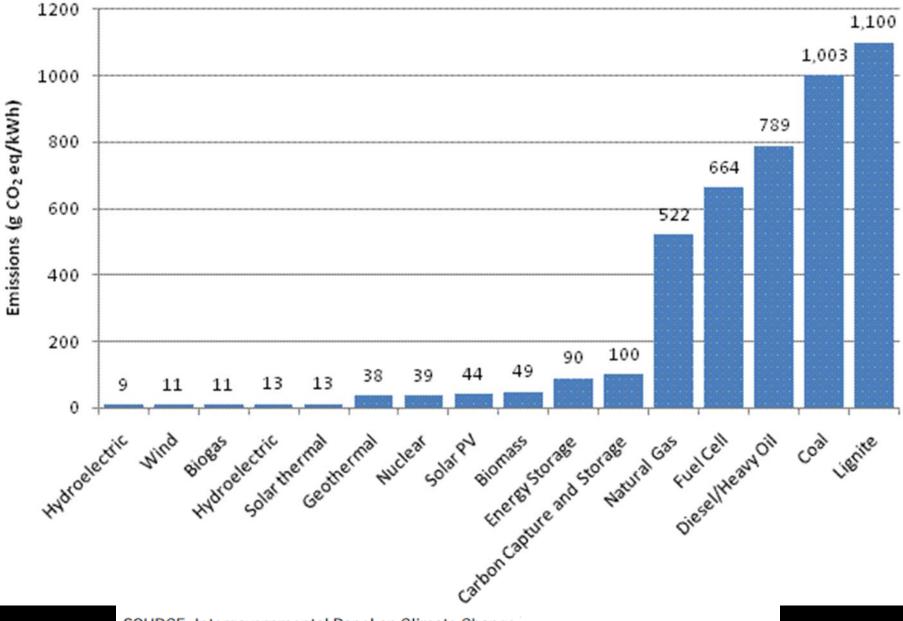
Wicked Problem?


Global installed wind energy capacity

TOTAL INSTALLED WIND POWER CAPACITY [MW]

WWEA mid-year report, 2022

Top 20 markets: new capacity 2022-2031


 Average capacity of new landbased turbines = 3-4 MW

An addition of 160,000 MW = ~53,000 3MW turbines in the US in the next ten years

• 1.21 GW

• 403 3MW wind turbines

CO2 EMISSIONS BY ENERGY SOURCE

SOURCE: Intergovernmental Panel on Climate Change.

Cumulative bat fatalities in the USA and Canada from **2000-2011** ranged from **840,486 - 1,690,696**

Arnett and Baerwald 2013

Annual Fatality Estimates in NA*

- American Wind Wildlife Information Centre (AWWIC) median = 2.66 bats/MW/yr in the U.S. (as of July 2018)
 - -109,795 MW installed as of October 2020
 -292,055 bats/yr in the U.S.
- Zimmerling and Francis (2016) median = 11.4 bats/turbine/yr in Canada
 - -13,413 MW (~6,707 turbines) installed as of October 2020
 - -76,460 bats/yr in Canada

Composition of fatalities

• 25 of 47 possible species in Canada and the U.S.

• Fatalities primarily open-air foragers during autumn (global pattern)

 74% are three species of migratory treeroosting bats

Silver-haired bats = 19% of all NA bat fatalities

(BSC 2019, AWWIC 2019) Photo: Brock Fenton

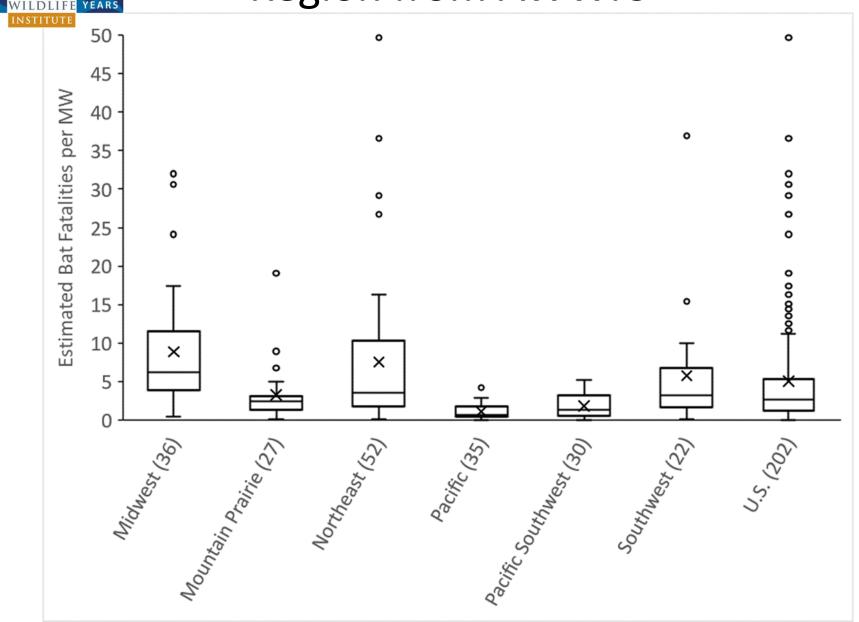
Eastern red bats = 23% of all NA bat fatalities

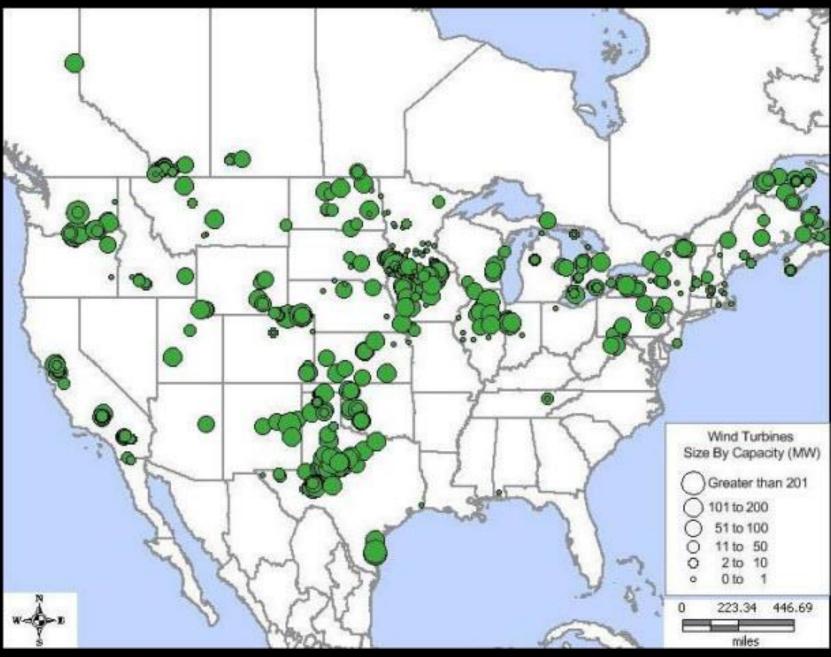
Photo: Brock Fenton

Hoary bats = 32% of all NA bat fatalities

(BSC 2019, AWWIC 2019) Pho

Photo: Brock Fenton


Fatality rates are highly variable



Variation in Bat Fatality Estimates by FWS Region from AWWIC

Installed Wind Capacity in NA*

Examples of variation in fatality rates from AWWIC

- Mexican free-tailed bats
 - -10% of all fatalities in the U.S.
 - Not present in 3/6 FWS regions
 - 43.7% of fatalities in SW and 53.2% in Pacific SW
- Tri-coloured bats
 - 5% of fatalities within FWS NE region
 - 0.4% of fatalities within Northern Allegheny
 Plateau Ecoregion
 - 11.4% of fatalities within the Ridge and Valley Ecoregion

Composition of fatalities

- Species most affected by WNS
 - Tri-coloured bat = 5%
 - Little brown Myotis = 7%
 - Northern long-eared Myotis <0.1%</p>

Significance of fatalities

- Most species have little or no protection
- Fatalities come from large catchment areas

- Turbines are killing prime breeding age adults
- Bats have slow life-histories
- Bat populations may already be declining

Declining populations of aerial insectivores

Impacts of wind energy on hoary bats

- Hoary bats = "Most likely" model predicted 90% decline within 50 years (Frick et al 2017)
 - Based on expert elicitation and a suite of realistic demographic and fatality scenarios
 - Did NOT include build-out or curtailment/mitigation

Impacts of wind energy on hoary bats

 Friedenberg and Frick (2021) state that: "current levels of wind energy build-out may have already caused substantial population declines. Under our lowestrisk scenario of high maximum growth rate and low wind energy build-out, the median simulated population of 2.25 million hoary bats experienced a 50% decline by Photo: Brock Fenton 2028."

Impacts of wind energy on hoary bats

Risk type	Abundance (millions)	Target reduction of bat fatalities (%)	
		Low build-out $\lambda = 1.18$ to 1.0	High build-out $\lambda = 1.18$ to 1.0
50% Decline	1	75–100*	88–100*
by 2050	2.25	35–100*	66–100*
0 2000	4	0–93	38–98
10		0–30	0–63

Table 2. Target reduction of bat fatalities at wind turbines to manage risk of hoary bat decline

From Friedenberg and Frick 2021

Are populations declining?

- Hoary bats = 90% decline within 50 years (Frick et al 2017)
- Fatality rates at wind turbines over time
 - Mostly significant declines
- Capture/acoustic detection rates
 - Mixed results
 - ~2% decline/yr in hoary bats in the PNW (Rodhouse et al 2019)
- Rabies submission rates
 - All declines

Baerwald and Barclay In Prep

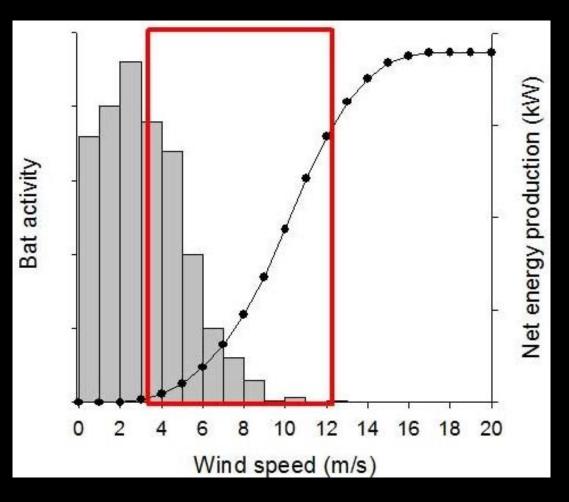
Are hoary bats an appropriate umbrella species?

Other questions being considered

- How many bats are injured but not killed? (e.g. via barotrauma)
- Will smaller population sizes of bats exacerbate declines? (i.e. Allee effect)
- What are the effects of offshore development on bats?

Bats offshore?

- In the U.S. multiple bat species detected foraging and migrating > 40 km from shore
- In Europe, bats recorded foraging and roosting on turbines and oil and gas platforms up to 80 km offshore
- Hoary bats colonized multiple remote locations like Galapagos and Hawaii (2x)



 Operational curtailment

Operational Curtailment?

Raising cut-in
speed to between
5 m/sec and 6.5
m/sec reduces
overall bat
fatalities by ~50%

Costs on average
 ~ 1% of annual
 power production

- Operational curtailment
- Acoustic deterrents

Acoustic deterrents?

- NRG Systems (Weaver et al 2019)
- Overall reduction of bat fatalities = 38-61%
- Hoary bats = 62-95% reduction
- Brazilian free-tailed bats
 = 41-67% reduction
- Did not reduce fatalities for all bats (i.e. yellow bats)

- Operational curtailment
- Acoustic deterrents
- Informed siting
- Habitat compensation
- Managing cumulative effects
- Testing hypotheses about behaviour and attraction to change behaviour

Are hoary bats the cost of increasing wind energy development?

Questions?

baerwald@unbc.ca

UNBC UNIVERSITY OF NORTHERN BRITISH COLUMBIA

